Exercise 9

Let $z=r e^{i \theta}$ be a nonzero complex number and n a negative integer $(n=-1,-2, \ldots)$. Then define $z^{1 / n}$ by means of the equation $z^{1 / n}=\left(z^{-1}\right)^{1 / m}$ where $m=-n$. By showing that the m values of $\left(z^{1 / m}\right)^{-1}$ and $\left(z^{-1}\right)^{1 / m}$ are the same, verify that $z^{1 / n}=\left(z^{1 / m}\right)^{-1}$. (Compare with Exercise 7, Sec. 8.)

Solution

If z is a nonzero complex number, then it can be represented in polar form as $z=r e^{i \theta}$. Start by evaluating $\left(z^{1 / m}\right)^{-1}$, where m is a positive integer.

$$
\begin{aligned}
\left(z^{1 / m}\right)^{-1} & =\frac{1}{z^{1 / m}} \\
& =\frac{1}{\left(r e^{i \theta}\right)^{1 / m}} \\
& =\frac{1}{r^{1 / m} e^{i \theta / m}} \\
& =\frac{1}{r^{1 / m}} \cdot \frac{1}{e^{i \theta / m}} \\
& =r^{-1 / m} \cdot \frac{e^{i 0}}{e^{i \theta / m}} \\
& =r^{-1 / m} \cdot e^{i 0-i \theta / m} \\
& =r^{-1 / m} e^{-i \theta / m}
\end{aligned}
$$

Now evaluate $\left(z^{-1}\right)^{1 / m}$.

$$
\begin{aligned}
\left(z^{-1}\right)^{1 / m} & =\left(\frac{1}{z}\right)^{1 / m} \\
& =\left(\frac{1}{r e^{i \theta}}\right)^{1 / m} \\
& =\left(\frac{1}{r} \cdot \frac{1}{e^{i \theta}}\right)^{1 / m} \\
& =\left(r^{-1} \cdot \frac{e^{i 0}}{e^{i \theta}}\right)^{1 / m} \\
& =\left(r^{-1} \cdot e^{i 0-i \theta}\right)^{1 / m} \\
& =\left(r^{-1} \cdot e^{-i \theta}\right)^{1 / m} \\
& =r^{-1 / m} e^{-i \theta / m}
\end{aligned}
$$

Since $\left(z^{1 / m}\right)^{-1}=\left(z^{-1}\right)^{1 / m}$, the definition of $z^{1 / n}$ can also be written as $z^{1 / n}=\left(z^{1 / m}\right)^{-1}$.

